欢迎来到华中科技大学中英HUST-RRes基因工程与基因组学联合实验室!
当前位置: 首页   >   科学研究   >   研究成果   >   发表论文   >   正文

Coexpression of the High Molecular Weight Glutenin Subunit 1Ax1 and Puroindoline Improves Dough Mixing Properties in Durum Wheat (Triticum turgidum L ssp durum)

作者:    信息来源:    发布时间: 2017-08-02

Coexpression of the High Molecular Weight Glutenin Subunit 1Ax1 and Puroindoline Improves Dough Mixing Properties in Durum Wheat (Triticum turgidum L ssp durum)

Li, Y (Li, Yin) ; Wang, Q (Wang, Qiong) ; Li, XY (Li, Xiaoyan) ; Xiao, X (Xiao, Xin) ; Sun, FS (Sun, Fusheng) ; Wang, C (Wang, Cheng) ; Hu, W (Hu, Wei) ; Feng, ZJ (Feng, Zhijuan) ; Chang, JL (Chang, Junli) ; Chen, MJ (Chen, Mingjie) ; Wang, YS (Wang, Yuesheng) ; Li, KX (Li, Kexiu) ; Yang, GX (Yang, Guangxiao) ; He, GY (He, Guangyuan)

Abstract:Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness indurum wheat could significantly improve its bread making quality and may not even impair its pasta making potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat.

Linkhttp://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050057&type=printable

DOI: 10.1371/journal.pone.0050057

    地址:中国湖北武汉珞喻路1037号 邮编:430074
    联系我们:电话: 87792275 邮箱china-uk.ijl@hust.edu.cn
    CopyRight© 2017 版权所有华中科技大学中英HUST-RRes基因工程与基因组学联合实验室