欢迎来到华中科技大学中英HUST-RRes基因工程与基因组学联合实验室!
当前位置: 首页   >   科学研究   >   研究成果   >   发表论文   >   正文

BdCIPK31, a Calcineurin B-Like Protein-Interacting Protein Kinase, Regulates Plant Response to Drought and Salt Stress

作者:    信息来源:    发布时间: 2017-12-17

BdCIPK31, a Calcineurin B-Like Protein-Interacting Protein Kinase, Regulates Plant Response to Drought and Salt Stress

Qingchen Luo, Qiuhui Wei,Ruibin Wang, Yang Zhang, Fan Zhang, Yuan He, Shiyi Zhou, Jialu Feng, Guangxiao Yang, and Guangyuan He

AbstractCalcineurin B-like protein interacting protein kinases (CIPKs) are vital elements in plant abiotic stress signaling pathways. However, the functional mechanism of CIPKs has not been understood clearly, especially in Brachypodium distachyon, a new monocot model plant. In this study, BdCIPK31, a CIPK gene from B. distachyon was characterized. BdCIPK31 was downregulated by polyethylene glycol, NaCl, H2O2, and abscisic acid (ABA) treatments. Transgenic tobacco plants overexpressing BdCIPK31 presented improved drought and salt tolerance, and displayed hypersensitive response to exogenous ABA. Further investigations revealed that BdCIPK31 functioned positively in ABA-mediated stomatal closure, and transgenic tobacco exhibited reduced water loss under dehydration conditions compared with the controls. BdCIPK31 also affected Na+/K+ homeostasis and root K+ loss, which contributed to maintain intracellular ion homeostasis under salt conditions. Moreover, the reactive oxygen species scavenging system and osmolyte accumulation were enhanced by BdCIPK31 overexpression, which were conducive for alleviating oxidative and osmotic damages. Additionally, overexpression of BdCIPK31 could elevate several stress-associated gene expressions under stress conditions. In conclusion, BdCIPK31 functions positively to drought and salt stress through ABA signaling pathway. Overexpressing BdCIPK31 functions in stomatal closure, ion homeostasis, ROS scavenging, osmolyte biosynthesis, and transcriptional regulation of stress-related genes.

Conclusion In conclusion, BdCIPK31 confers enhanced drought and salt stress tolerance and ABA hypersensitivity in plants. Overexpressing BdCIPK31 functions in stomatal closure, ion homeostasis, ROS scavenging, osmolyte biosynthesis, and transcriptional regulation of stress-related genes. Overall, BdCIPK31 functions in plant responses to drought and salt stress as a positive regulator in ABA-mediated Ca2+ signaling pathway.

Linkhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500663/

Doi: 10.3389/fpls.2017.01184

 

    地址:中国湖北武汉珞喻路1037号 邮编:430074
    联系我们:电话: 87792275 邮箱china-uk.ijl@hust.edu.cn
    CopyRight© 2017 版权所有华中科技大学中英HUST-RRes基因工程与基因组学联合实验室